Gauss-Jordan Elimination and Basic Matrix Operations

Finite Math

25 October 2018

Quiz

Give the augmented matrix for the system

Non-Square Systems

Example

Solve by Gauss-Jordan elimination:

$$\begin{array}{rclcrcr}
 2x & - & y & - & 3z & = & 8 \\
 x & - & 2y & & & = & 7
 \end{array}$$

3 / 24

Application

Example

A company that rents small moving trucks wants to purchase 16 trucks with a combined capacity of 19,200 cubic feet. Three different types of trucks are available: a cargo van with a capacity of 300 cubic feet, a 15-foot truck with a capacity of 900 cubic feet, and a 24-foot truck with a capacity of 1,500-cubic feet. How many of each type should the company purchase?

Definition (Equal)

Two matrices are equal if they are the same size and the corresponding elements in each matrix are equal.

Definition (Equal)

Two matrices are equal if they are the same size and the corresponding elements in each matrix are equal.

$$\begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} = \begin{bmatrix} u & v \\ w & x \\ y & z \end{bmatrix}$$

Definition (Equal)

Two matrices are equal if they are the same size and the corresponding elements in each matrix are equal.

$$\begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} = \begin{bmatrix} u & v \\ w & x \\ y & z \end{bmatrix}$$

Definition (Equal)

Two matrices are equal if they are the same size and the corresponding elements in each matrix are equal.

$$\begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} = \begin{bmatrix} u & v \\ w & x \\ y & z \end{bmatrix}$$

$$a = u$$

Definition (Equal)

Two matrices are equal if they are the same size and the corresponding elements in each matrix are equal.

$$\begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} = \begin{bmatrix} u & v \\ w & x \\ y & z \end{bmatrix}$$

$$a = u$$
 $b = v$

Definition (Equal)

Two matrices are equal if they are the same size and the corresponding elements in each matrix are equal.

$$\begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} = \begin{bmatrix} u & v \\ w & x \\ y & z \end{bmatrix}$$

$$a = u$$
 $b = v$
 $c = w$

Definition (Equal)

Two matrices are equal if they are the same size and the corresponding elements in each matrix are equal.

$$\begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} = \begin{bmatrix} u & v \\ w & x \\ y & z \end{bmatrix}$$

$$a = u$$
 $b = v$
 $c = w$ $d = x$

Definition (Equal)

Two matrices are equal if they are the same size and the corresponding elements in each matrix are equal.

$$\begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} = \begin{bmatrix} u & v \\ w & x \\ y & z \end{bmatrix}$$

$$a = u$$
 $b = v$
 $c = w$ $d = x$
 $e = v$

Definition (Equal)

Two matrices are equal if they are the same size and the corresponding elements in each matrix are equal.

$$\begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} = \begin{bmatrix} u & v \\ w & x \\ y & z \end{bmatrix}$$

$$a = u$$
 $b = v$
 $c = w$ $d = x$
 $e = v$ $f = z$

Addition and Subtraction

In order to add or subtract matrices they must be the same size.

Addition and Subtraction

In order to add or subtract matrices they must be the same size.

- When adding matrices, we just add the corresponding elements.
- When subtracting matrices, we just subtract the corresponding elements.

Addition and Subtraction

In order to add or subtract matrices they must be the same size.

- When adding matrices, we just add the corresponding elements.
- When subtracting matrices, we just subtract the corresponding elements.

Example

Find the indicated operations

(a)

$$\begin{bmatrix} 3 & 2 \\ -1 & -1 \\ 0 & 3 \end{bmatrix} + \begin{bmatrix} -2 & 3 \\ 1 & -1 \\ 2 & -2 \end{bmatrix}$$
 (c)

$$\left[\begin{array}{cc} 3 & 2 \\ 5 & 0 \end{array}\right] - \left[\begin{array}{cc} 2 & -2 \\ 3 & 4 \end{array}\right]$$

$$\left[\begin{array}{ccc} 3 & 2 & -1 \\ -1 & 0 & 3 \end{array}\right] + \left[\begin{array}{ccc} -2 & 3 \\ 1 & -1 \\ 2 & -2 \end{array}\right]$$

Now You Try It!

Example

Find the indicated operations

(a)

$$\left[\begin{array}{cc}2&-3\\1&2\end{array}\right]+\left[\begin{array}{cc}1&-1\\0&-2\end{array}\right]$$

(b)

$$\left[\begin{array}{cc} -3 & 2 \\ 4 & -1 \end{array}\right] - \left[\begin{array}{cc} -2 & 5 \\ -1 & 3 \end{array}\right]$$

(c)

$$\begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix} + \begin{bmatrix} -2 & 3 & -2 \end{bmatrix}$$

Scalar Multiplication

If k is a number and M is a matrix, we can form the scalar product kM by just multiplying every element of M by k.

Scalar Multiplication

If k is a number and M is a matrix, we can form the scalar product kM by just multiplying every element of M by k.

Example

Find

$$\begin{bmatrix}
3 & -1 & 0 \\
-2 & 1 & 3 \\
0 & -1 & -2
\end{bmatrix}$$

Now You Try It

Example

Find

$$5\begin{bmatrix} 1 & -1 \\ 0 & -2 \\ 2 & -3 \\ 3 & 3 \end{bmatrix}$$

In order to define matrix multiplication, it is easier to first define the product of a row matrix with a column matrix.

Definition

Suppose we have a 1 \times n row matrix A and an n \times 1 column matrix B where

$$A = [\begin{array}{cccc} a_1 & a_2 & \cdots & a_n \end{array}] \quad and \quad B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

Definition

Suppose we have a 1 \times n row matrix A and an n \times 1 column matrix B where

$$A = [\begin{array}{cccc} a_1 & a_2 & \cdots & a_n \end{array}] \quad and \quad B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

Then
$$AB = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = a_1b_1 + a_2b_2 + \cdots + a_nb_n.$$

It is very important that the number of columns in A matches the number of rows in B.

Example

Find

$$\begin{bmatrix} -1 & 0 & 3 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \\ -1 \end{bmatrix}$$

Now You Try It!

Example

Find

$$\begin{bmatrix} 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$$

Definition (Matrix Multiplication)

Let A be an $m \times p$ matrix and let B be a $p \times n$ matrix. Let R_i denote the matrix formed by the i^{th} row of A and let C_j denote the matrix formed by the j^{th} column of B. Then the ij^{th} element of the matrix product AB is R_iC_i .

Definition (Matrix Multiplication)

Let A be an $m \times p$ matrix and let B be a $p \times n$ matrix. Let R_i denote the matrix formed by the i^{th} row of A and let C_j denote the matrix formed by the j^{th} column of B. Then the ij^{th} element of the matrix product AB is R_iC_i .

Remark

It is very important that the number of columns of A matches the number of rows of B, otherwise the products R_iC_j would not be able to be defined. That is, if A is an $m \times n$ matrix and B is an $p \times q$ matrix, the product AB is defined if and only if n = p.

$$\left[\begin{array}{cc}1&2\\2&1\end{array}\right]\left[\begin{array}{cc}1&2&4\\3&5&7\end{array}\right]$$

```
\left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right] \left[\begin{array}{ccc} 1 & 2 & 4 \\ 3 & 5 & 7 \end{array}\right]
```

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 3 & 5 & 7 \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} \begin{bmatrix} C_1 & C_2 & C_3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 3 & 5 & 7 \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} \begin{bmatrix} C_1 & C_2 & C_3 \end{bmatrix} = \begin{bmatrix} R_1 C_1 & R_1 C_2 & R_1 C_3 \\ R_2 C_1 & R_2 C_2 & R_2 C_3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 3 & 5 & 7 \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} \begin{bmatrix} C_1 & C_2 & C_3 \end{bmatrix} = \begin{bmatrix} R_1C_1 & R_1C_2 & R_1C_3 \\ R_2C_1 & R_2C_2 & R_2C_3 \end{bmatrix}$$
$$= \begin{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} & \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} & \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \end{bmatrix} \\ \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} & \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} & \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \end{bmatrix} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 3 & 5 & 7 \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} \begin{bmatrix} C_1 & C_2 & C_3 \end{bmatrix} = \begin{bmatrix} R_1C_1 & R_1C_2 & R_1C_3 \\ R_2C_1 & R_2C_2 & R_2C_3 \end{bmatrix}$$

$$= \begin{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} & \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} & \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} 1 \cdot 1 + 2 \cdot 3 & 1 \cdot 2 + 2 \cdot 5 & 1 \cdot 4 + 2 \cdot 7 \\ 2 \cdot 1 + 1 \cdot 3 & 2 \cdot 2 + 1 \cdot 5 & 2 \cdot 4 + 1 \cdot 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 3 & 5 & 7 \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} \begin{bmatrix} C_1 & C_2 & C_3 \end{bmatrix} = \begin{bmatrix} R_1 C_1 & R_1 C_2 & R_1 C_3 \\ R_2 C_1 & R_2 C_2 & R_2 C_3 \end{bmatrix}$$

$$= \begin{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} & \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} & \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \end{bmatrix} \\ \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} & \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} & \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} 1 \cdot 1 + 2 \cdot 3 & 1 \cdot 2 + 2 \cdot 5 & 1 \cdot 4 + 2 \cdot 7 \\ 2 \cdot 1 + 1 \cdot 3 & 2 \cdot 2 + 1 \cdot 5 & 2 \cdot 4 + 1 \cdot 7 \end{bmatrix}$$

$$= \begin{bmatrix} 1 + 6 & 2 + 10 & 4 + 14 \\ 2 + 3 & 4 + 5 & 8 + 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 3 & 5 & 7 \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} \begin{bmatrix} C_1 & C_2 & C_3 \end{bmatrix} = \begin{bmatrix} R_1 C_1 & R_1 C_2 & R_1 C_3 \\ R_2 C_1 & R_2 C_2 & R_2 C_3 \end{bmatrix}$$

$$= \begin{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} & \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} & \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \end{bmatrix} \\ \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} & \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} & \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} 1 \cdot 1 + 2 \cdot 3 & 1 \cdot 2 + 2 \cdot 5 & 1 \cdot 4 + 2 \cdot 7 \\ 2 \cdot 1 + 1 \cdot 3 & 2 \cdot 2 + 1 \cdot 5 & 2 \cdot 4 + 1 \cdot 7 \end{bmatrix}$$

$$= \begin{bmatrix} 1 + 6 & 2 + 10 & 4 + 14 \\ 2 + 3 & 4 + 5 & 8 + 7 \end{bmatrix} = \begin{bmatrix} 7 & 12 & 18 \\ 5 & 9 & 15 \end{bmatrix}$$

Example

Let
$$A = \begin{bmatrix} -1 & 0 & 3 & -2 \\ 1 & 2 & 2 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 1 \\ 2 & 3 \\ 1 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix}$, $D = \begin{bmatrix} -2 & 4 \\ 1 & -2 \end{bmatrix}$. Find

the following products, if possible.

- (a) AB
- (b) *BA*
- (c) CD

Example

$$Let \ A = \left[\begin{array}{ccc} -1 & 0 & 3 & -2 \\ 1 & 2 & 2 & 0 \end{array} \right], \ B = \left[\begin{array}{ccc} -1 & 1 \\ 2 & 3 \\ 1 & 0 \end{array} \right], \ C = \left[\begin{array}{ccc} 1 & 2 \\ -1 & -2 \end{array} \right], \ D = \left[\begin{array}{ccc} -2 & 4 \\ 1 & -2 \end{array} \right]. \ \textit{Find}$$

the following products, if possible.

- (a) *AB*
- (b) BA
- (c) *CD*
- (0) 00
- (d) *DC*
- (e) CB
- (f) D^2

Interesting Fact!

Solution

(d)
$$\begin{bmatrix} -6 & -12 \\ 3 & 6 \end{bmatrix}$$

(e) Not defined.

(f)
$$\begin{bmatrix} 8 & -16 \\ -4 & 8 \end{bmatrix}$$

Interesting Fact!

Solution

(d)
$$\begin{bmatrix} -6 & -12 \\ 3 & 6 \end{bmatrix}$$

(e) Not defined.

(f)
$$\begin{bmatrix} 8 & -16 \\ -4 & 8 \end{bmatrix}$$

Remark

Note that parts (c) and (d) show that matrix multiplication is not commutative. That is, it is not necessarily true that AB = BA for matrices A and B, even if both matrix products are defined.